3G, short for third Generation, is a term used to represent the 3rd generation of mobile telecommunications technology. Also called Tri-Band 3G. This is a set of standards used for mobile devices and mobile telecommunication services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.
Several telecommunications companies market wireless mobile Internet services as 3G, indicating that the advertised service is provided over a 3G wireless network. Services advertised as 3G are required to meet IMT-2000 technical standards, including standards for reliability and speed (data transfer rates). To meet the IMT-2000 standards, a system is required to provide peak data rates of at least 200 kbit/s (about 0.2 Mbit/s). However, many services advertised as 3G provide higher speed than the minimum technical requirements for a 3G service. Recent 3G releases, often denoted 3.5G and 3.75G, also provide mobile broadband access of several Mbit/s to smartphones and mobile modems in laptop computers.
The following standards are typically branded 3G:
The above systems and radio interfaces are based on spread spectrum radio transmission technology. While the GSM EDGE standard ("2.9G"), DECT cordless phones and Mobile WiMAX standards formally also fulfill the IMT-2000 requirements and are approved as 3G standards by ITU, these are typically not branded 3G, and are based on completely different technologies.
A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1981/1982. Each generation is characterized by new frequency bands, higher data rates and non backwards compatible transmission technology. The first release of the 3GPP Long Term Evolution (LTE) standard does not completely fulfill the ITU 4G requirements called IMT-Advanced. First release LTE is not backwards compatible with 3G, but is a pre-4G or 3.9G technology[citation needed], however sometimes branded 4G by the service providers. Its evolution LTE Advanced is a 4G technology. WiMAX is another technology verging on or marketed as 4G.
Overview:
The following common standards comply with the IMT2000/3G standard:
While DECT cordless phones and Mobile WiMAX standards formally also fulfill the IMT-2000 requirements, they are not usually considered due to their rarity and unsuitability for usage with mobile phones.
Detailed breakdown of 3G systems:
The 3G (UMTS and CDMA2000) research and development projects started in 1992. In 1999, ITU approved five radio interfaces for IMT-2000 as a part of the ITU-R M.1457 Recommendation; WiMAX was added in 2007.
There are evolutionary standards (EDGE and CDMA) that are backwards-compatible extensions to pre-existing 2G networks as well as revolutionary standards that require all-new network hardware and frequency allocations. The cell phones used utilise UMTS in combination with 2G GSM standards and bandwidths, but do not support EDGE. The latter group is the UMTS family, which consists of standards developed for IMT-2000, as well as the independently developed standards DECT and WiMAX, which were included because they fit the IMT-2000 definition.
History:
3G technology is the result of ground-breaking research and development work carried out by the International Telecommunication Union (ITU) in the early 1980s. 3G specifications and standards were developed after fifteen years of persistence and hard work. The technical specifications were made available to the public under the name IMT-2000. The communication spectrum between 400 MHz to 3 GHz was allocated for 3G. Both the government and communication companies unanimously approved the 3G standard. The first pre-commercial 3G network was launched by NTT DoCoMo in Japan in 1998, branded as FOMA. It was first available in May 2001 as a pre-release (test) of W-CDMA technology. The first commercial launch of 3G was also by NTT DoCoMo in Japan on 1 October 2001, although it was initially somewhat limited in scope; broader availability of the system was delayed by apparent concerns over its reliability.
The first European pre-commercial network was an UMTS network on the Isle of Man by Manx Telecom, the operator then owned by British Telecom, and the first commercial network (also UMTS based W-CDMA) in Europe was opened for business by Telenor in December 2001 with no commercial handsets and thus no paying customers.
The first network to go commercially live was by SK Telecom in South Korea on the CDMA-based 1xEV-DO technology in January 2002. By May 2002 the second South Korean 3G network was by KT on EV-DO and thus the Koreans were the first to see competition among 3G operators.
The first commercial United States 3G network was by Monet Mobile Networks, on CDMA2000 1x EV-DO technology, but this network provider later shut down operations. The second 3G network operator in the USA was Verizon Wireless in July 2002 also on CDMA2000 1x EV-DO. AT&T Mobility is also a true 3G UMTS network, having completed its upgrade of the 3G network to HSUPA.
The first pre-commercial demonstration network in the southern hemisphere[dubious – discuss] was built in Adelaide, South Australia by m.Net Corporation in February 2002 using UMTS on 2,100 MHz. This was a demonstration network for the 2002 IT World Congress. The first commercial 3G network was launched by Hutchison Telecommunications branded as Three or "3" in June 2003.
Emtel Launched the first 3G network in Africa.
By June 2007, the 200 millionth 3G subscriber had been connected. This is only 6.7% of the 3 billion mobile phone subscriptions worldwide. In the countries where 3G was launched first – Japan and South Korea – 3G penetration is over 70%. In Europe the leading country for 3G penetration is Italy with a third of its subscribers migrated to 3G. Other leading countries for 3G use include UK, Austria, Australia and Singapore at the 20% migration level. A confusing statistic is counting CDMA2000 1x RTT customers as if they were 3G customers. If using this definition, then the total 3G subscriber base would be 475 million at June 2007 and 15.8% of all subscribers worldwide.
Adoption:
3G was relatively slow to be adopted globally. In some instances, 3G networks do not use the same radio frequencies as 2G so mobile operators must build entirely new networks and license entirely new frequencies, especially so to achieve high data transmission rates. Other delays were due to the expenses of upgrading transmission hardware, especially for UMTS, whose deployment required the replacement of most broadcast towers. Due to these issues and difficulties with deployment, many carriers were not able to or delayed acquisition of these updated capabilities.
In December 2007, 190 3G networks were operating in 40 countries and 154 HSDPA networks were operating in 71 countries, according to the Global Mobile Suppliers Association (GSA). In Asia, Europe, Canada and the USA, telecommunication companies use W-CDMA technology with the support of around 100 terminal designs to operate 3G mobile networks.
Roll-out of 3G networks was delayed in some countries by the enormous costs of additional spectrum licensing fees. (See Telecoms crash.) The license fees in some European countries were particularly high, bolstered by government auctions of a limited number of licenses and sealed bid auctions, and initial excitement over 3G's potential.
The 3G standard is perhaps well known because of a massive expansion of the mobile communications market post-2G and advances of the consumer mophone. An especially notable development during this time is the smartphone (for example, the iPhone, and the Android family), combining the abilities of a PDA with a mobile phone, leading to widespread demand for mobile internet connectivity. 3G has also introduced the term "mobile broadband" because its speed and capability make it a viable alternative for internet browsing, and USB Modems connecting to 3G networks are becoming increasingly common.
Patents:
It has been estimated that there are almost 8,000 patents declared essential (FRAND) related to the 483 technical specifications which form the 3GPP and 3GPP2 standards. Twelve companies accounted in 2004 for 90% of the patents (Qualcomm, Ericsson, Nokia, Motorola, Philips, NTT DoCoMo, Siemens, Mitsubishi, Fujitsu, Hitachi, InterDigital, and Matsushita).
Even then, some patents essential to 3G might have not been declared by their patent holders. It is believed that Nortel and Lucent have undisclosed patents essential to these standards.
Furthermore, the existing 3G Patent Platform Partnership pool has little impact on FRAND protection, because it excludes the four largest patents owners for 3G.
Features:
Data rates
ITU has not provided a clear definition of the data rate users can expect from 3G equipment or providers. Thus users sold 3G service may not be able to point to a standard and say that the rates it specifies are not being met. While stating in commentary that "it is expected that IMT-2000 will provide higher transmission rates: a minimum data rate of 2 Mbit/s for stationary or walking users, and 384 kbit/s in a moving vehicle,"[20] the ITU does not actually clearly specify minimum or average rates or what modes of the interfaces qualify as 3G, so various rates are sold as 3G intended to meet customers expectations of broadband data.
Security
3G networks offer greater security than their 2G predecessors. By allowing the UE (User Equipment) to authenticate the network it is attaching to, the user can be sure the network is the intended one and not an impersonator. 3G networks use the KASUMI block cipher instead of the older A5/1 stream cipher. However, a number of serious weaknesses in the KASUMI cipher have been identified.
In addition to the 3G network infrastructure security, end-to-end security is offered when application frameworks such as IMS are accessed, although this is not strictly a 3G property.
Applications of 3G:
The bandwidth and location information available to 3G devices gives rise to applications not previously available to mobile phone users. Some of the applications are:
Evolution:
Both 3GPP and 3GPP2 are working on extensions to 3G standard that are based on an all-IP network infrastructure and using advanced wireless technologies such as MIMO. These specifications already display features characteristic for IMT-Advanced (4G), the successor of 3G. However, falling short of the bandwidth requirements for 4G (which is 1 Gbit/s for stationary and 100 Mbit/s for mobile operation), these standards are classified as 3.9G or Pre-4G.
3GPP plans to meet the 4G goals with LTE Advanced, whereas Qualcomm has halted development of UMB in favour of the LTE family.
On 14 December 2009, Telia Sonera announced in an official press release that "We are very proud to be the first operator in the world to offer our customers 4G services." With the launch of their LTE network, initially they are offering pre-4G (or beyond 3G) services in Stockholm, Sweden and Oslo, Norway.
Several telecommunications companies market wireless mobile Internet services as 3G, indicating that the advertised service is provided over a 3G wireless network. Services advertised as 3G are required to meet IMT-2000 technical standards, including standards for reliability and speed (data transfer rates). To meet the IMT-2000 standards, a system is required to provide peak data rates of at least 200 kbit/s (about 0.2 Mbit/s). However, many services advertised as 3G provide higher speed than the minimum technical requirements for a 3G service. Recent 3G releases, often denoted 3.5G and 3.75G, also provide mobile broadband access of several Mbit/s to smartphones and mobile modems in laptop computers.
The following standards are typically branded 3G:
- The UMTS system, first offered in 2001, standardized by 3GPP, used primarily in Europe, Japan, China (however with a different radio interface) and other regions predominated by GSM 2G system infrastructure. The cell phones are typically UMTS and GSM hybrids. Several radio interfaces are offered, sharing the same infrastructure:
- The original and most widespread radio interface is called W-CDMA.
- The TD-SCDMA radio interface was commercialised in 2009 and is only offered in China.
- The latest UMTS release, HSPA+, can provide peak data rates up to 56 Mbit/s in the downlink in theory (28 Mbit/s in existing services) and 22 Mbit/s in the uplink.
- The CDMA2000 system, first offered in 2002, standardized by 3GPP2, used especially in North America and South Korea, sharing infrastructure with the IS-95 2G standard. The cell phones are typically CDMA2000 and IS-95 hybrids. The latest release EVDO Rev B offers peak rates of 14.7 Mbit/s downstream.
The above systems and radio interfaces are based on spread spectrum radio transmission technology. While the GSM EDGE standard ("2.9G"), DECT cordless phones and Mobile WiMAX standards formally also fulfill the IMT-2000 requirements and are approved as 3G standards by ITU, these are typically not branded 3G, and are based on completely different technologies.
A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1981/1982. Each generation is characterized by new frequency bands, higher data rates and non backwards compatible transmission technology. The first release of the 3GPP Long Term Evolution (LTE) standard does not completely fulfill the ITU 4G requirements called IMT-Advanced. First release LTE is not backwards compatible with 3G, but is a pre-4G or 3.9G technology[citation needed], however sometimes branded 4G by the service providers. Its evolution LTE Advanced is a 4G technology. WiMAX is another technology verging on or marketed as 4G.
Overview:
The following common standards comply with the IMT2000/3G standard:
- EDGE, a revision by the 3GPP organization to the older 2G GSM based transmission methods, utilizing the same switching nodes, base station sites and frequencies as GPRS, but new base station and cellphone RF circuits. It is based on the three times as efficient 8PSK modulation scheme as supplement to the original GMSK modulation scheme. EDGE is still used extensively due to its ease of upgrade from existing 2G GSM infrastructure and cell-phones.
- EDGE combined with the GPRS 2.5G technology is called EGPRS, and allows peak data rates in the order of 200 kbit/s, just as the original UMTS WCDMA versions, and thus formally fulfills the IMT2000 requirements on 3G systems. However, in practice EDGE is seldom marketed as a 3G system, but a 2.9G system. EDGE shows slightly better system spectral efficiency than the original UMTS and CDMA2000 systems, but it is difficult to reach much higher peak data rates due to the limited GSM spectral bandwidth of 200 kHz, and it is thus a dead end.
- EDGE was also a mode in the IS-135 TDMA system, today ceased.
- Evolved EDGE, the latest revision, has peaks of 1 Mbit/s downstream and 400 kbit/s upstream, but is not commercially used.
- The Universal Mobile Telecommunications System, created and revised by the 3GPP. The family is a full revision from GSM in terms of encoding methods and hardware, although some GSM sites can be retrofitted to broadcast in the UMTS/W-CDMA format.
- W-CDMA is the most common deployment, commonly operated on the 2,100 MHz band. A few others use the 850, 900 and 1,900 MHz bands.
- HSPA is an amalgamation of several upgrades to the original W-CDMA standard and offers speeds of 14.4 Mbit/s down and 5.76 MBit/s up. HSPA is backwards compatible with and uses the same frequencies as W-CDMA.
- HSPA+, a further revision and upgrade of HSPA, can provide theoretical peak data rates up to 168 Mbit/s in the downlink and 22 Mbit/s in the uplink, using a combination of air interface improvements as well as multi-carrier HSPA and MIMO. Technically though, MIMO and DC-HSPA can be used without the "+" enhancements of HSPA+
- The CDMA2000 system, or IS-2000, including CDMA2000 1x and CDMA2000 High Rate Packet Data (or EVDO), standardized by 3GPP2 (differing from the 3GPP), evolving from the original IS-95 CDMA system, is used especially in North America, China, India, Pakistan, Japan, South Korea, Southeast Asia, Europe and Africa.
- CDMA2000 1x Rev. E has an increased voice capacity (in excess of three times) compared to Rev. 0 EVDO Rev. B offers downstream peak rates of 14.7 Mbit/s while Rev. C enhanced existing and new terminal user experience.
While DECT cordless phones and Mobile WiMAX standards formally also fulfill the IMT-2000 requirements, they are not usually considered due to their rarity and unsuitability for usage with mobile phones.
Detailed breakdown of 3G systems:
The 3G (UMTS and CDMA2000) research and development projects started in 1992. In 1999, ITU approved five radio interfaces for IMT-2000 as a part of the ITU-R M.1457 Recommendation; WiMAX was added in 2007.
There are evolutionary standards (EDGE and CDMA) that are backwards-compatible extensions to pre-existing 2G networks as well as revolutionary standards that require all-new network hardware and frequency allocations. The cell phones used utilise UMTS in combination with 2G GSM standards and bandwidths, but do not support EDGE. The latter group is the UMTS family, which consists of standards developed for IMT-2000, as well as the independently developed standards DECT and WiMAX, which were included because they fit the IMT-2000 definition.
History:
3G technology is the result of ground-breaking research and development work carried out by the International Telecommunication Union (ITU) in the early 1980s. 3G specifications and standards were developed after fifteen years of persistence and hard work. The technical specifications were made available to the public under the name IMT-2000. The communication spectrum between 400 MHz to 3 GHz was allocated for 3G. Both the government and communication companies unanimously approved the 3G standard. The first pre-commercial 3G network was launched by NTT DoCoMo in Japan in 1998, branded as FOMA. It was first available in May 2001 as a pre-release (test) of W-CDMA technology. The first commercial launch of 3G was also by NTT DoCoMo in Japan on 1 October 2001, although it was initially somewhat limited in scope; broader availability of the system was delayed by apparent concerns over its reliability.
The first European pre-commercial network was an UMTS network on the Isle of Man by Manx Telecom, the operator then owned by British Telecom, and the first commercial network (also UMTS based W-CDMA) in Europe was opened for business by Telenor in December 2001 with no commercial handsets and thus no paying customers.
The first network to go commercially live was by SK Telecom in South Korea on the CDMA-based 1xEV-DO technology in January 2002. By May 2002 the second South Korean 3G network was by KT on EV-DO and thus the Koreans were the first to see competition among 3G operators.
The first commercial United States 3G network was by Monet Mobile Networks, on CDMA2000 1x EV-DO technology, but this network provider later shut down operations. The second 3G network operator in the USA was Verizon Wireless in July 2002 also on CDMA2000 1x EV-DO. AT&T Mobility is also a true 3G UMTS network, having completed its upgrade of the 3G network to HSUPA.
The first pre-commercial demonstration network in the southern hemisphere[dubious – discuss] was built in Adelaide, South Australia by m.Net Corporation in February 2002 using UMTS on 2,100 MHz. This was a demonstration network for the 2002 IT World Congress. The first commercial 3G network was launched by Hutchison Telecommunications branded as Three or "3" in June 2003.
Emtel Launched the first 3G network in Africa.
By June 2007, the 200 millionth 3G subscriber had been connected. This is only 6.7% of the 3 billion mobile phone subscriptions worldwide. In the countries where 3G was launched first – Japan and South Korea – 3G penetration is over 70%. In Europe the leading country for 3G penetration is Italy with a third of its subscribers migrated to 3G. Other leading countries for 3G use include UK, Austria, Australia and Singapore at the 20% migration level. A confusing statistic is counting CDMA2000 1x RTT customers as if they were 3G customers. If using this definition, then the total 3G subscriber base would be 475 million at June 2007 and 15.8% of all subscribers worldwide.
Adoption:
3G was relatively slow to be adopted globally. In some instances, 3G networks do not use the same radio frequencies as 2G so mobile operators must build entirely new networks and license entirely new frequencies, especially so to achieve high data transmission rates. Other delays were due to the expenses of upgrading transmission hardware, especially for UMTS, whose deployment required the replacement of most broadcast towers. Due to these issues and difficulties with deployment, many carriers were not able to or delayed acquisition of these updated capabilities.
In December 2007, 190 3G networks were operating in 40 countries and 154 HSDPA networks were operating in 71 countries, according to the Global Mobile Suppliers Association (GSA). In Asia, Europe, Canada and the USA, telecommunication companies use W-CDMA technology with the support of around 100 terminal designs to operate 3G mobile networks.
Roll-out of 3G networks was delayed in some countries by the enormous costs of additional spectrum licensing fees. (See Telecoms crash.) The license fees in some European countries were particularly high, bolstered by government auctions of a limited number of licenses and sealed bid auctions, and initial excitement over 3G's potential.
The 3G standard is perhaps well known because of a massive expansion of the mobile communications market post-2G and advances of the consumer mophone. An especially notable development during this time is the smartphone (for example, the iPhone, and the Android family), combining the abilities of a PDA with a mobile phone, leading to widespread demand for mobile internet connectivity. 3G has also introduced the term "mobile broadband" because its speed and capability make it a viable alternative for internet browsing, and USB Modems connecting to 3G networks are becoming increasingly common.
Patents:
It has been estimated that there are almost 8,000 patents declared essential (FRAND) related to the 483 technical specifications which form the 3GPP and 3GPP2 standards. Twelve companies accounted in 2004 for 90% of the patents (Qualcomm, Ericsson, Nokia, Motorola, Philips, NTT DoCoMo, Siemens, Mitsubishi, Fujitsu, Hitachi, InterDigital, and Matsushita).
Even then, some patents essential to 3G might have not been declared by their patent holders. It is believed that Nortel and Lucent have undisclosed patents essential to these standards.
Furthermore, the existing 3G Patent Platform Partnership pool has little impact on FRAND protection, because it excludes the four largest patents owners for 3G.
Features:
Data rates
ITU has not provided a clear definition of the data rate users can expect from 3G equipment or providers. Thus users sold 3G service may not be able to point to a standard and say that the rates it specifies are not being met. While stating in commentary that "it is expected that IMT-2000 will provide higher transmission rates: a minimum data rate of 2 Mbit/s for stationary or walking users, and 384 kbit/s in a moving vehicle,"[20] the ITU does not actually clearly specify minimum or average rates or what modes of the interfaces qualify as 3G, so various rates are sold as 3G intended to meet customers expectations of broadband data.
Security
3G networks offer greater security than their 2G predecessors. By allowing the UE (User Equipment) to authenticate the network it is attaching to, the user can be sure the network is the intended one and not an impersonator. 3G networks use the KASUMI block cipher instead of the older A5/1 stream cipher. However, a number of serious weaknesses in the KASUMI cipher have been identified.
In addition to the 3G network infrastructure security, end-to-end security is offered when application frameworks such as IMS are accessed, although this is not strictly a 3G property.
Applications of 3G:
The bandwidth and location information available to 3G devices gives rise to applications not previously available to mobile phone users. Some of the applications are:
- Mobile TV
- Video on demand
- Video Conferencing
- Telemedicine
- Location-based services
- Global Positioning System (GPS)
Evolution:
Both 3GPP and 3GPP2 are working on extensions to 3G standard that are based on an all-IP network infrastructure and using advanced wireless technologies such as MIMO. These specifications already display features characteristic for IMT-Advanced (4G), the successor of 3G. However, falling short of the bandwidth requirements for 4G (which is 1 Gbit/s for stationary and 100 Mbit/s for mobile operation), these standards are classified as 3.9G or Pre-4G.
3GPP plans to meet the 4G goals with LTE Advanced, whereas Qualcomm has halted development of UMB in favour of the LTE family.
On 14 December 2009, Telia Sonera announced in an official press release that "We are very proud to be the first operator in the world to offer our customers 4G services." With the launch of their LTE network, initially they are offering pre-4G (or beyond 3G) services in Stockholm, Sweden and Oslo, Norway.
Source:
0 comments:
Post a Comment